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Unitary fusion categories

Unitary fusion category

A unitary fusion category is a finitely semisimple, rigid C*-tensor
category with simple unit object.

Generalize representations categories of finite quantum
groups (i.e. finite dimensional compact quantum groups).

Objects, morphisms, associative tensor products, duals, direct
sum decomposition, etc.

Can always be realized as representation category of a finite
quantum groupoid (e.g. C* weak Hopf algebra).

Fusion rules: [X ⊗ Y ] =
⊕

[Z ]∈Irr(C)N
Z
XY [Z ]

Fusion categories have unique positive dimension function on
objects which is a character of the fusion ring, i.e. d1 = 1 and
dXdY =

∑
Z NZ

XY dZ (need not be integer!)
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Correspondences

Correspondences

IF A is a C*-algebra, and A− A correspondence is a (right) Hilbert
A-module XA together with a non-degenerate homomorphism
A→ L(XA) (adjointabe operators).

Correspondences assemble into a C*-tensor category Corr(A):

Objects are correspondences XA

Morphisms are (adjointable) intertwiners.

The ⊗ product is given by the relative product of
correspondences X �A Y .
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Actions on C*-algebra

An action of a fusion category on a C*-algebra A is a unitary
tensor functor F : C → Corr(A)

If A is unital, this is equivalent to a C-module category
structure on the catgeory of finitely generated projective
modules.

A version of “quantum symmetry.”

For von Neumann algebras A, extensively studied in the
context of subfactors: Every fusion category admits a
“unique” action on the hyperfinite II1 factor R (Popa’s
theorem).

Subfactors constructions work to produce actions of fusion
catgeories on C*-algebras realted to graphs: AF algebras,
Graph C*-algebras, Free graph algebras, etc.
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Question

Quantum symmetries of ”classical” spaces?

Can fusion categories act on C (X ) where X is a compact Hausdorff
space? (Also interesting for other ”topological/geometric”
algebras, e.g. continuous trace, Roe C*-algebras, etc.)

A fusion category C acts on a point (i.e. has a ”trivial
action”) if and only if it has a fiber functor, i.e. iff
C ∼= Rep(G) for a finite quantum group.

Every fusion category can act on finite discrete set via finitely
semi-simple module categories (and thus on disconected
spaces).

It is not obvious whether or not we can build actions of fusion
categories (with no fiber functor) on C (X ) where X is
connected...
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Obstructions

Obstruction Theorem

Let A be a unital, stably finite C*-algebra, and C a fusion category
acting on A. Then there exists a state φ on the ordered abelian
group K0(A) such that φ(K0(A)) ⊆ R contains the dimensions of
objects in C.

Idea of proof:

The ordered abelian group K0(A) acquires the structure of a
positive module over the fusion ring of C:
[H] / [X ] := [H �A X ] for X ∈ C.

For any state φ on K0(A), 1
D

∑
[X ]∈Irr(C) φ(· / [X ])dX is a state

(up to rescaling)

Satisfies φ([H] / [X ]) = dXφ([H]). for all [H] ∈ K+
0 (A).
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Corollary

If X is a compact connected Hausdorff space and A is a unital
continuous trace C*-algebra with spectrum A (e.g. C (X )) then
any fusion category acting on A must have integral dimensions.

Can we find actions of integral fusion categories with no
fiber functor on connected spaces?

What are examples of such fusion categories? (Can’t come
directly from quantum groups!)
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3-cocycles

Let G be a (discrete) group. A unitary 3-cocycle is a function

ω : G × G × G → U(1)

such that

ω(f , g , h)ω(f , gh, k)ω(g , h, k) = ω(fg , h, k)ω(f , g , hk)

The set of 3-cocycles Z 3(G ,U(1)) is an abelian group under
pointwise multiplication.

ω is normalized if ω(g , h, k) = 1 if any of g , h, k = 1 (we assume
this WLOG)

ω is a coboundary if there exists c : G × G → U(1) such that
ω(f , g , h) = c(g , h)−1c(fg , h)c(f , gh)−1c(f , g). Such a c is a called
a trivialization of ω.

The set of 3-cocycles module the set of coboundaries is the abelian
group H3(G ,U(1))
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Hilb(G , ω)

Associated to a 3-cocycle ω ∈ Z 3(G ,U(1)) is a fusion category
Hilb(G , ω):

Objects are G-graded (finite dimensional) Hilbert spaces,
morphisms are linear maps respecting grading.

Vg ⊗Wh := (V ⊗W )gh

Asscoiator isomorphism (Vg ⊗Wk)⊗ Uk =
((V ⊗W )⊗ U)ghk ∼= (V ⊗ (W ⊗ U))ghK = Vg ⊗ (Wh ⊗ Uk)
is given by scalar ω(g , h, k) times the usual associator in Hilb.

Representations of Quasi-hopf algebra (Fun(G ), ω).

These have fiber functors (act on a point) if and only if [ω] is
trival in H3(G ,U(1)).
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Anomalous symmetries

Definition: anomalous action

Let G be a group, ω ∈ Z 3(G ,U(1)). An ω-anomalous action of G
on a C*-algebra B consists of an assignment g 7→ αg ∈ Aut(B),
together with a family of unitaries mg ,h ∈ M(B) satisfying:

mg ,hαg (αh(x)) = αgh(x)mg ,h for all x ∈ B

ω(g , h, k)mgh,kmg ,h = mg ,hkαg (mh,k)

For G finite, these are the same thing as actions of the fusion
category Hilb(G , ω) on B such that each g ∈ G is assigned
“automorphic bimodule”.

From an arbitrary Hilb(G , ω) action on A, we can pass to an
ω-anomalous action of G on the stabilization A⊗K (latter is
compact operators on separable Hilbert space).
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Examples

For Z (MB) = C1, and ω-anomalous action is the same thing
as a homomorphism π : G → Out(B) whose ”lifting
obstruction” is precisely ω (we are interested in non-trivial
centers!)

(V. Jones): For every finite group G and every anomaloy ω,
there exists a (essentially unique) ω-anomalous G -action on
the hyperfinite II1 factor.

Examples of actions on C*-algebras from general fusion
category constructions (e.g. on AF-algebras, Cuntz-Kreiger
algebras, free graph algebras etc.)

Consider G as a discrete set. Then for any group G and any
ω ∈ Z 3(G ,U(1)), there exists an ω-anomlous action on
c0(G ). Purely algebraic.
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Anomalies in topology

No-go Theorem

Let X be a compact connected, locally path-connected Hausdorff
space.

If H1(X ,Z) = 0 then there are no anomalous actions on
C (X ) for any finite group G .

If in addition X has no non-trivial complex line bundles (for
manifolds H2(X ,Z) = 0, e.g. homology spheres of dimension
n ≥ 2), there are no anomalous actions of any finite groups on
the stabilization C (X )⊗K.

Go Theorem

For every finite group G , every ω ∈ Z 3(G ,U(1)), and every n ≥ 2,
there exists a closed connected n-manifold M and an ω-anomalous
action of G on C (M)⊗K. For n ≥ 4, M can be chosen so that
H1(M,Z) = 0
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Anomalies in coarse geometry (mention in passing!)

No-go Theorem

Let X be a discrete metric space with bounded geometry. Then
there are no anomalous actions of any group on the Roe algebra
C ∗(X ).

Go Theorem

For every finite group G and ω ∈ Z 3(G ,U(1)), there exists a
discrete metric space X with bounded geometry and property A,
and an ω-anomalous action of G on the Roe corona C ∗(X )/K.

Corey Jones Actions of fusion categories on topological spaces



Idea of construction

Theorem (Adaptation of Eilenberg-MacLane (groups), V. Jones
(von Neumann algebras) to C*-setting)

Suppose we have the following data:

A group Q and [ω] ∈ H3(Q,U(1)), with a normalized
representative ω ∈ Z 3(Q,U(1)).

A group G and a surjective homomorphism ρ : G → Q with
kernel K

A normalized cochain c ∈ C 2(G ,U(1)) such that dc = ρ∗(ω).

A homomorphism π : G → Aut(B).

Then there exists an ω-anomalous action of Q on the twisted
(reduced) crossed product B oπ,c K , where c ∈ Z 2(K ,U(1)) is the
restriction of c to K .
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How to use it?

Cohomology lemma (extension of V. Jones’ lemma)

Let Q be a finite group and [ω0] ∈ H3(Q,U(1)). Then there exists
a finite group G , a surjective homomorphism ρ : G → Q, a
normalized unitary 2-cochain c ∈ C 2(G ,U(1)), and a normalized
unitary 3-cocycle representative ω ∈ [ω0] such that dc = ρ∗(ω) and
c |Ker(ρ) = 1.

To find ω-anomalous action of Q on C (M)⊗K:

Find free G -action on compact connected manifold M̃
(standard algebraic topology).

Use above theorem/lemma to obtain anomalous Q action on
(ordinary, untwisted) crossed product C (M̃) o Ker(ρ) (if
crossed product twisted, possible non-trivial Dixmier-Douady
class).

By the results of Green,
(C (M̃) o Ker(ρ))⊗K ∼= C (M̃/Ker(ρ))⊗K).
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Continuous trace

(unital) Continuous trace C*-algebras are (roughly) bundles of
matrix algebras over compact Hausdorff spaces (which is its
spectrum).

Classified up to Morita equivalence by (torsion) elements of
H3(X ,Z).

Only integral fusion categories can act on continuous trace
C*-algebras with connected spectrum.

Using Q-system completion (joint w/ Quan Chen, Roberto
Hernandez Palomares, Dave Penneys) we can show, for every
group theoretical fusion category C (Morita equivalent to
Hilb(G , ω)) and every n ≥ 2, there is a closed connected
n-manifold X and an action on a continuous trace C*-algebras
A with spectrum X and an action of C on A.
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